Analytic Functions*

Piotr Nayar, kolokwium I

Zasady: Trzeba wybrac 5 zadan i zaznaczyc, ze maja one liczyc sie do wyniku z kolokwium. Pozostale zadania tez mozna rozwiazac. Kazde takie zadanie policze jak 3 zadania na pracy domowej.

Zadanie 1. Does there exist an analytic function in \mathbb{D} such that $|f(\frac{1}{n})| = e^{-n}$ for all $n = 2, 3, \ldots$?

Zadanie 2. Suppose $|a_k| < 1$ for k = 1, 2, ..., n. Let |b| < 1 and define $F(z) = \prod_{k=1}^n \frac{z-a_k}{1-\bar{a}_k z}$. Show that the equation F(z) = b has exactly n roots in \mathbb{D} , counting multiplicities.

Zadanie 3. Compute $\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^3 dx$.

Zadanie 4. Suppose that all the roots of $P(z) = a_0 + a_1 z + \ldots + a_n z^n$ have positive imaginary part. Show that the polynomials

 $U(z) = \operatorname{Re}(a_0) + \operatorname{Re}(a_1)z + \ldots + \operatorname{Re}(a_n)z^n, \qquad V(z) = \operatorname{Im}(a_0) + \operatorname{Im}(a_1)z + \ldots + \operatorname{Im}(a_n)z^n$

are real-rooted.

Zadanie 5. Suppose f is analytic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. Suppose |f(z)| > 1 on $\partial \mathbb{D}$ and |f(0)| < 1. Show that f has at least one zero in \mathbb{D} .

Zadanie 6. Let $f_n : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be given by $f_n(z) = 1 + \frac{1}{z} + \frac{1}{2z^2} + \ldots + \frac{1}{n!z^n}$. Show that for any $\varepsilon > 0$ there exists n_0 such that for $n \ge n_0$ all the solutions to the equation $f_n(z) = 0$ lie in $\{0 < |z| < \varepsilon\}$.

Zadanie 7. Let $f : \mathbb{D} \to \{\operatorname{Re} z > 0\}$ be analytic. Show that for $z \in \mathbb{D}$ we have

$$\frac{1-|z|}{1+|z|}|f(0)| \le |f(z)| \le \frac{1+|z|}{1-|z|}|f(0)| \quad \text{and} \quad |f'(0)| \le 2|\operatorname{Re} f(0)|.$$

Zadanie 8. Suppose $f : \mathbb{C} \to \mathbb{C}$ is entire and not of the form az+b. Show that $z, f(z), f(f(z)), \ldots, f^{\circ n}(z)$ are linearly independent over \mathbb{C} .

Zadanie 9. Find all injective meromorphic functions in \mathbb{C} .

Zadanie 10. Let U be a domain such that $\overline{\mathbb{D}} \subseteq U$ and let $f : U \to \mathbb{C}$ be analytic. Define $C_r = f(\{z : |z| = r\})$. Show that if diam $(C_1) \leq 1$ then diam $(C_r) \leq r$ for all $r \in [0, 1]$.

Zadanie 11. Let f be analytic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. Show that

$$2\int_{-1}^{1} |f(x)|^2 \mathrm{d}x \le \int_{-\pi}^{\pi} |f(e^{it})|^2 \mathrm{d}t.$$