Analytic Functions*

Piotr Nayar, kolokwium I

Zasady: Trzeba wybrac 5 zadan i zaznaczyc, ze maja one liczyc sie do wyniku z kolokwium. Pozostale zadania tez mozna rozwiazac. Kazde takie zadanie policze jak 3 zadania na pracy domowej.

Zadanie 1. Does there exist an analytic function in \mathbb{D} such that $\left|f\left(\frac{1}{n}\right)\right|=e^{-n}$ for all $n=2,3, \ldots$?
Zadanie 2. Suppose $\left|a_{k}\right|<1$ for $k=1,2, \ldots, n$. Let $|b|<1$ and define $F(z)=\prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}$. Show that the equation $F(z)=b$ has exactly n roots in \mathbb{D}, counting multiplicities.

Zadanie 3. Compute $\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{3} \mathrm{~d} x$.
Zadanie 4. Suppose that all the roots of $P(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}$ have positive imaginary part. Show that the polynomials

$$
U(z)=\operatorname{Re}\left(a_{0}\right)+\operatorname{Re}\left(a_{1}\right) z+\ldots+\operatorname{Re}\left(a_{n}\right) z^{n}, \quad V(z)=\operatorname{Im}\left(a_{0}\right)+\operatorname{Im}\left(a_{1}\right) z+\ldots+\operatorname{Im}\left(a_{n}\right) z^{n}
$$

are real-rooted.
Zadanie 5. Suppose f is analytic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. Suppose $|f(z)|>1$ on $\partial \mathbb{D}$ and $|f(0)|<1$. Show that f has at least one zero in \mathbb{D}.

Zadanie 6. Let $f_{n}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be given by $f_{n}(z)=1+\frac{1}{z}+\frac{1}{2 z^{2}}+\ldots+\frac{1}{n!z^{n}}$. Show that for any $\varepsilon>0$ there exists n_{0} such that for $n \geq n_{0}$ all the solutions to the equation $f_{n}(z)=0$ lie in $\{0<|z|<\varepsilon\}$.

Zadanie 7. Let $f: \mathbb{D} \rightarrow\{\operatorname{Re} z>0\}$ be analytic. Show that for $z \in \mathbb{D}$ we have

$$
\frac{1-|z|}{1+|z|}|f(0)| \leq|f(z)| \leq \frac{1+|z|}{1-|z|}|f(0)| \quad \text { and } \quad\left|f^{\prime}(0)\right| \leq 2|\operatorname{Re} f(0)|
$$

Zadanie 8. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire and not of the form $a z+b$. Show that $z, f(z), f(f(z)), \ldots, f^{\circ n}(z)$ are linearly independent over \mathbb{C}.

Zadanie 9. Find all injective meromorphic functions in \mathbb{C}.
Zadanie 10. Let U be a domain such that $\overline{\mathbb{D}} \subseteq U$ and let $f: U \rightarrow \mathbb{C}$ be analytic. Define $C_{r}=f(\{z:|z|=r\})$. Show that if $\operatorname{diam}\left(C_{1}\right) \leq 1$ then $\operatorname{diam}\left(C_{r}\right) \leq r$ for all $r \in[0,1]$.

Zadanie 11. Let f be analytic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. Show that

$$
2 \int_{-1}^{1}|f(x)|^{2} \mathrm{~d} x \leq \int_{-\pi}^{\pi}\left|f\left(e^{i t}\right)\right|^{2} \mathrm{~d} t
$$

